首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7150篇
  免费   385篇
  国内免费   41篇
电工技术   41篇
综合类   10篇
化学工业   2685篇
金属工艺   477篇
机械仪表   63篇
建筑科学   45篇
矿业工程   31篇
能源动力   903篇
轻工业   243篇
水利工程   24篇
石油天然气   73篇
武器工业   1篇
无线电   741篇
一般工业技术   1841篇
冶金工业   109篇
原子能技术   60篇
自动化技术   229篇
  2024年   6篇
  2023年   467篇
  2022年   124篇
  2021年   253篇
  2020年   401篇
  2019年   282篇
  2018年   186篇
  2017年   472篇
  2016年   401篇
  2015年   370篇
  2014年   531篇
  2013年   428篇
  2012年   315篇
  2011年   311篇
  2010年   333篇
  2009年   367篇
  2008年   185篇
  2007年   381篇
  2006年   333篇
  2005年   213篇
  2004年   129篇
  2003年   172篇
  2002年   180篇
  2001年   179篇
  2000年   92篇
  1999年   141篇
  1998年   86篇
  1997年   27篇
  1996年   17篇
  1995年   21篇
  1994年   11篇
  1993年   6篇
  1992年   5篇
  1991年   10篇
  1990年   6篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   10篇
  1984年   13篇
  1983年   9篇
  1982年   14篇
  1981年   13篇
  1980年   8篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1975年   6篇
  1974年   3篇
排序方式: 共有7576条查询结果,搜索用时 15 毫秒
1.
The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole (MFerrite@Ppy) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, CoFerrite@30Ppy is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for CoFerrite@30Ppy was found to be 10.44 mmol g?1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.  相似文献   
2.
Carbon-based materials have been often employed as electrocatalytic substrates because of their large surface area/highly porous structure. Similar to carbon substrates, the non-carbon related materials such as transition metals also play an important role in improving catalytic performance. However, the simultaneous synthesis and metallic functionalization of carbon substrates is a highly challenging issue. Herein, a hydrothermal method has been used for the preparation of Ni-functionalized porous carbon balls. The significant role of Ni2+ ions in the synthesis of porous carbon balls has been confirmed. The results of transmission electron microscopy indicate that, the as-prepared porous carbon balls were suitable for the dispersion of Pt nanoparticles with small particle size (less than 4 nm). In addition to providing the OHads species, the Ni can also modify the surface electronic structure of Pt. Electrochemical measurements results reveal that, under the strong interactions between Ni and Pt, the as-prepared porous carbon balls supported Pt nanoparticles (Pt/Ni-CB) catalyst possesses excellent electrocatalytic activity, stability and CO anti-poisoning capability towards methanol electrooxidation reaction (MOR). This work opens a novel idea for the construction of the metal functionalization of carbon substrates and their subsequent applications in other electrocatalytic reactions.  相似文献   
3.
Molecular mechanisms and process kinetics of crystallizing concomitant polymorphs remain poorly understood. Solvent-mediated phase transformation and concomitant crystallization are difficult to be distinguished in practice, as multiple forms can be detected at the same time. Herein, we developed a population balance model to simulate a concomitant crystallization process of two polymorphs of tolfenamic acid. Our kinetic modeling aims to understand concomitant crystallization and help guide form selection of such a molecular system. Crystallization kinetics of ethanolic solutions were uncovered from induction time measurements, as well as seeded and unseeded crystallization experiments. Experimental and simulation results demonstrate that the stable form I crystallizes concomitantly with the metastable form II. The faster growing form II results in an intermediate decline in the composition of form I in crystallized samples, a characteristic feature of the concomitantly crystallized system. A four-quadrant scheme of attainable polymorph outcome was simulated under various crystallization conditions.  相似文献   
4.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   
5.
6.
Triangulation of the Ag-Hg-Se-I system in the vicinity of quaternary phase Ag4HgSe2I2 was performed by differential thermal analysis, X-ray diffraction and electromotive force (EMF) methods. The spatial position of the phase region Ag4HgSe2I2-Se-HgI2 regarding the figurative point of silver was used to write the chemical reaction of formation of Ag4HgSe2I2. The EMF measurements were carried out by applying an electrochemical cell: (–) C|Ag|Ag2GeS3 glass|Ag4HgSe2I2, HgI2, Se|C (+), where C is graphite and Ag2GeS3 glass is the fast purely Ag+ ions conducting electrolyte. The linear dependence of the EMF of the electrochemical cell on temperature was used to determine the standard thermodynamic values of Ag4HgSe2I2 for the first time.  相似文献   
7.
Character of conversion of organic matter from Domanic rocks of Pervomaiskoye field (Tatarstan) of Semiluki horizon of upper Devonian deposits in the hydrothermal-catalytic system at temperature of 300?°C in carbon dioxide medium was studied with the application of complex of oil-soluble precursors of catalysts containing Fe, Co, and Cu. In presence of catalysts complex, content of organic extract increases, in which content of hydrocarbon fractions, saturated and aromatic hydrocarbons, increases 1.5 times, while resins content decreases by two times. As result of kerogen destruction in products of experiments, the content of asphaltenes and carbonaceous substances such as carbenes and carboides increase.  相似文献   
8.
9.
Self-assembled peptide hydrogels represent the realization of peptide nanotechnology into biomedical products. There is a continuous quest to identify the simplest building blocks and optimize their critical gelation concentration (CGC). Herein, a minimalistic, de novo dipeptide, Fmoc-Lys(Fmoc)-Asp, as an hydrogelator with the lowest CGC ever reported, almost fourfold lower as compared to that of a large hexadecapeptide previously described, is reported. The dipeptide self-assembles through an unusual and unprecedented two-step process as elucidated by solid-state NMR and molecular dynamics simulation. The hydrogel is cytocompatible and supports 2D/3D cell growth. Conductive composite gels composed of Fmoc-Lys(Fmoc)-Asp and a conductive polymer exhibit excellent DNA binding. Fmoc-Lys(Fmoc)-Asp exhibits the lowest CGC and highest mechanical properties when compared to a library of dipeptide analogues, thus validating the uniqueness of the molecular design which confers useful properties for various potential applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号